
ON THE MANIPULABILITY OF DUAL COOPERATIVE ROBOTS

P. Chiacchio,S. Chiaverini,L. Sciavicco,B. Siciliano

Dipartimento di Informatica e Sistemistica
Universit/t di Napoli

Via Claudio 21, 80125 Napoli, Italy

Abstract

In this paper the definition of manipulability ellipsoids for dual robot systems is given. A suitable

k:'neto-static formulation for dual cooperative robots is adopted which allows for a global task space

description of ezternal and internal forces as well as absolute and relative velocities. The well-known

concepts of force and velocity manipulability ellipsoids for a single robot are formally eztended and
the contributions of the two single robots to the cooperative system ellipsoids are evidenced. Duality

properties arc discussed. A practical case study is developed.

1. Introduction

Cooperative robots have been recognized by the robotics research community as offering enhanced
capabilities over current single robot structures. Dual robot cooperation allows for performing tasks

such as handling large, heavy and non-rigid objects, assembly and mating mechanical parts, which

could not be executed by a single robot. Another advantage is the enlargement of the reachable

workspace. All the above features play a crucial role, for instance, in space robotics applications

where cooperative manipulation is often considered as an essential requirement.

In spite of the potential benefits achievable with dual robots, the control problem becomes more

complex due to the kinematic and dynamic interactions. A must for the solution of this kind of

problem is constituted by an effective description of the kineto-static and dynamic relationship for a

general dual robot system. To this purpose, the formulation proposed by Dauchez and Uchiyama [1]
has been shown to be suitable to coordinated control schemes with equal importance attributed to the

two robots performing a given task. Their approach is somewhat opposite to the master-slave strategy

suggested by Luh and Zheng [2] which has been argued by Uchiyama et al. [3] to be unsuitable for

practical position/force control of dual robots.

It is believed that an important issue is the definition of quantitative measures of the enhanced

performance offered by dual robot cooperation. It is well-known that the manipulability ellipsoids

introduced by Yoshikawa [4] represent one of such measures for a single robot. The contribution of

this work is to provide a systematic way of extending the above concept [4] to the dual robot case. In

order to accomplish this goal, tlke formulation dictated in [3] is followed here. The motivation behind

this choice is that it leads to a natural, straightforward derivation of manipulability measures which be

consistent with those proposed in [4] and susceptible of an immediate physical interpretation for the

closed-chain system created by the dual robots tightly handling an object. A similar, parallel research

effort has recently been produced by Lee and Bejczy [5], although the definition of manipulability

measures for a dual robot system is obtained according to different criteria related to the effect of

one robot on the other, instead of regarding the closed-chain as a whole.

A practical case study is worked out for two simple planar cooperative robots. Velocity and force

static ellipsoids are obtained which show the correctness and functionality of the proposed approach.
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2. Kineto-static formulation for two cooperative robots

In the following the formulation of task space coordinates required for describing cooperative
tasks is briefly summarized from [2]. For the purpose of the present work, the case when the two

robots are rigidly attached to the object is considered, i.e. a rigid grasp.

According to [2], the cooperative task is described in terms of a set of absolute coordinates and a

set of relative coordinates. The static relationship between the generalized forces exerted by the two

robots and the generalized forces acting on the object -- external and internal -- is presented first.

The kinematic relationship will be derived by using the duality relation between forces and velocities.

Fig. 1 illustrates two cooperative robots tightly grasping an object. Let m be the common dimension
ofthe taskspacesofthe two robotsand

denote the vectors of the generalized forces (forces fl, f2 and moments nl, n2) exerted by the two
end-effectors, respectively. Let then

denote the vectors of external and internal forces/moments acting on the object, respectively. Let be

Itcan be shown that

where

h,=Wf (4)

' 0 , 0)-R1, I-R2_ I (5)

with Rl_, R2_ defined by fl × rl_ = -Rl_fl, f2 × r2_ -- -R2_f2, respectively. I and 0 denote identity
and null matrices of appropriate dimensions. Also it is

f = Vh, (6)

where

V = RI_
-X " (7)

-R2a

Itcan be recognizedthat the mapping V in (7) spans the nullspace of the mapping W in (5).This

means that the externaland internalforce/moment vectorsbelong to orthogonalsubspaces [6].

Once thestaticrelationshiphas been established,the differentialkinematicrelationshipisderived
in a similarmanner. Let

denote thevectorsofthe velocities(translational_i,_2 and rotationalcoi,_o2)atthe two end-effectors,

respectively.Let then
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denote the vectorsofexternal(absolute)and internal(relative)velocities,respectively.Let be

In forceof the dualityrelationbetween forcesand velocitieswhich isderivedfrom the principleof

virtualwork inmechanics,itcan be shown that

t=wT_a (11)

and

_', = vri

with W and V defined in (5) and (7), respectively.

(12)

3. Definition of manipulability ellipsoids

The idea of measuring the manipulating ability of robotic mechanisms was first introduced in [4].

According to that concept, a force manipulability ellipsoid and a velocity manipulability ellipsoid can

be defined for a single robot. Assume that an n-DOF robot is given and an m-dimensional task space

is of interest, usually with m _< n. It is well-known that

r = Jr(0)qt (13)

represents the static relationship between the task force vector 7 and the joint torque vector r through

the transpose of the Jacobian matrix J(0), with 0 denoting the joint displacement vector. Dually,

v = J(0)0 (14)

represents the kinematic relationship between the joint velocity vector 0 and the task velocity vector

v through the Jacobian J(O).

The unit sphere in the joint torque space

rrr = 1 (15)

.Tr (jjT).y __ 1 (16)

maps intothe taskforcespace ellipsoid

which is called force manipulability ellipsoid [4]. Dually, the unit sphere in the joint velocity space

maps into the task velocity space ellipsoid

_T_ = 1 (17)

v r (JJr)-zv = 1 (18)

which is called velocity manipulability ellipsoid [4]. Note that the explicit dependence on 0 has

been dropped in J. A direct comparison of (16) with (18) indicates that the principal axes (related

to the eigenvectors) of the two ellipsoids coincide, whilst the lengths of the axes (related to the

eigenvalues) are in inverse proportion. This inverse velocity-force relation is consistent with regarding

the manipulator as a mechanical transformer [7]. Conservation of energy dictates that amplification
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in velocitytransmissionmust invariablybe accompanied by reductionin forcetransmission,and
vice-versa.

In the following the concepts of force and velocity ellipsoids defined in (16) and (18) are formally

extended to a two robotsystem, based on the kineto-staticformulationgivenin the previoussection.

Let nl and n2 be the DOF's of the robots,respectively.The staticrelationship(13)can be written
fora two robot system as

with f definedin (3),where

t:J_f (19)

,I
denotesthe extended jointtorquevectorin an (nl+ n2)-dimensionalspace,and

(20)

0

denotes the extended Jacobian matrix. Solving eq. (19) for f yields

f-- JTtt (22)

where the simbol _ t" denotes a pseudo-inverse of proper dimensions; in this case it is a left pseudo-
inverse.

The external force manipulability ellipsoid and the absolute velocity manipulability ellipsoid are
derived first. Plugging (22) into (4) gives

ha = j_tt (23)

which expressesthe relationshipbetween the extended jointtorque vectorand the externalforce

vector,through the matrix

j_t _=W jr: (24)

which is analogous to the pseudo-inverse of the Jacobian jr in (13) for a single robot. At this point

the formal definition of the external force manipulability ellipsoid can be given. The unit sphere in
the extended joint torque space

t rt : 1 (25)

maps into

h_ (J_J_)ha = 1 (26)

which is defined here as external force manipulability ellipsoid. Dually, the formal definition of the

absolute velocity manipulability ellipsoid can be given. The unit sphere in the extended joint velocity
space

_IT_I = 1 (27)

maps into

(28)•T,j jT,-1.Ya( a _) ya:l

which is defined here as absolute velocity manipulability ellipsoid. Notice that in (27)

01q=(02)  29,
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indicates the extended joint vector.
An attractive mathematical expression can be found for the matrix J=J_ constituting the core

of the two manipulability ellipsoids just defined in (26) and (28), which is directly related to the

Jacobians of the two robots defined in (21). As shown in Appendix A, one may obtain

jojf __((j_.j_)_ _.+ (j_j_ )...1)_,. (30)

with

( o )jS t = jSt + __.(_t b i= 1,2 (31)

where the subscriptf referstothe upper blockofthe matrix jTt which maps thejointtorquevector

riintothe soleforcecomponents ofthe taskforcevectorf_definedin (1)(i.e.excludingthe moment

components). Itisworth noticingthatinthe particularcasewhen R/a --0,the matrices_rt simplify

to jTt.
In the same formalmanner asdone above for the externalforcemanipulabilityellipsoidand the

absolutevelocitymanipulabilityellipsoid,the derivationofthe internalforcemanipulabilityellipsoid

and the relativevelocitymanipulabilityellipsoidispresentednow. Plugging (22)into(6)gives

t = JTh, (32)

with

jr _ j_V. (33)

It is to be remarked that, by virtue of the definitions (24) and (33) and of the structure of the matrices

W and V, it results

j rt jr = 0. (34)

The unitsphere (25)maps into

hy(J, JT)h, = 1 (35)

which is defined as internal force manipulability ellipsoid. Dually, the unit sphere (27) maps into

(36)

which is defined as relative velocity manipulability ellipsoid. In this case too, an attractive mathe-

matical expression can be found for the matrix J, Jr constituting the core of the two manipulability

ellipsoids just defined in (35) and (36), which is directly related to the Jacobians of the two robots

defined in (21). As shown in Appendix B, one may obtain

j, jT = jl j_ + J2J_ (37)

with

jr =(_l),-1jT÷((_l),-,(j_),,Rxa 0) i= 1,2 (38)

where the subscript n refers to the lower block of the matrix J_ which maps the sole moment compo-

nents of the task force vector fi defined in (1) into the joint torque vector ri.

From eq. (34), it directly follows that

_t jr _ j_t j_ =0. (39)
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It is worth noticing that in the particular case when R_a -- 0, the matrices jT simplify to Jr; in this
case, thus, eq. (39) trivially holds.

Eqs. (30) and (37) suggest a nice interpretation of the way the Jacobians of the two robots

combine to form the respective cores of the ellipsoids defined above. If each term of the type jjT is

regarded as a generalized impedance, eq. (30) resembles the mathematical expression of the parallel

of two impedances, whilst eq. (37) resembles that of the series of two impedances. Therefore, one
would naturally be driven to generalize these results to the multiple robot case; this topic is under
investigation.

4. Case study

Two 3-DOF planar robots are considered for the purpose of illustrating the application of the

concepts presented in this work to a practical two robot system. For the sake of simplicity, the end-

effectors of the two robots are supposed to be located in the same point (i.e. the physical object is
removed); this implies that _ = J_ = Ji. This assumption is not restrictive at all, as formally shown
above. Moreover, a two-dimensional global task space is assumed, i.e. only forces and linear velocities
are of interest; the system thus possesses two redundant DOF's.

A CAD tool has been developed which is articulated into the following steps. The contact

point of the two end-effectors is input, then the two redundant DOF's are exploited to assign the
orientation angles of the end-effectors. A software package for solving the inverse kinematics of

general robot structures [8] is utilized to find the joint configurations and then the complete kineto-

static characterization of the system. An option is provided to compute the ellipsoid of interest.
The outputs are plotted by means of a graphic package. They illustrate the closed kinematic chain

together with the principal axes of the ellipsoids of the two single robots and those of the dual robot

system, in order that the manipulability of the cooperative system can be evaluated with respect to
the single robot manipulabilities.

Two complete sets of results for two different configurations of the dual robot system are displayed
in Figs. 2 and 3 respectively. The ellipsoids of each robot are included for a better comprehension

of the effects of the cooperation. It is remarkable that, in the second configuration, the two robots

are both proximal to singular configurations (see the shape of their ellipsoids). It can be recognized

that the external force ellipsoids (Figs. 2a and 3a) are improved in that the ability of each robot to

exert forces along a given direction is enhanced by the other, while the absolute velocity ellipsoids

(Figs. 2b and 3b) show that the ability of each robot to perform motions along a given direction is
penalized by the presence of the other. This result well agrees with practice, since it is intuitive that

when two robots cooperate the static force is shared by them whereas the faster robot is slowed down

by the other. Conversely, the ability of the system to absorbe forces along a direction is limited by
the weaker robot of the chain (Figs. 2c and 3c), while the ability of the system to give rise to relative

motions along a direction is supplied by both robots (Figs. 2d and 3d). All these conclusions reflect

the concept of duality which is at the basis of the definition of the manipulability ellipsoids presented.

5. Conclusions

The concept of manipulabilityellipsoidshas formallybeen extended to the case of dual robot

systems. A globalkineto-staticformulationof the closedchain createdby two tightlycooperating

robotshas been exploitedto defineexternaland internalforcemanipulabilityellipsoids.The corre-

sponding absoluteand relativevelocitymanipulabilityellipsoidshave been derivedon the basisofthe

dualityprinciplein mechanics. Functionalexpressionsfortheseellipsoidshave been obtainedthrough

the Jacobiansof the two robotsand a practicalruleof compositionhas been provided.The results

achieved for a simple casestudy have validatedthe theoreticalconclusionsin view of the physical

interpretationof the kineto-staticsof a dual robot system. Ithas been conjecturedthatthe proposed
definitionscan be extended to the multi-robotcase,although the formulationof internalforcesis
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not straightforward. This issue, along with the analysis of different types of cooperation (e.g. loose,

soft) and the formulation of dynamic manipulability ellipsoids, will constitute the subject of further

investigation.

References

[1] J. Y. S. Luh and Y. F. Zheng, UConstrained relations between two coordinated industrial robots
for motion control, _ Int. J. Robotics Research, Vol. 6, No. 3, pp. 60-70, 1987.

[2] P. Dauchez and M. Uchiyama, "Kinematic formulation for two force-controlled cooperating
robots," Srd Int. Conf. on Advanced Robotics, Versailles, France, Oct. 1987.

[3] M. Uchiyama, N. Iwssawa, and K. Hakomori, "Hybrid position/force control for coordination of a
two-arm robot, _ #th IEEE Int. Conf. on Robotics and Automation, Raleigh, NC, Mar.-Apr. 1987.

[4] T. Yoshikawa, "Analysis and control of robot manipulators with redundancy," 1st Int. Syrup. on
Robotics Research, Eds. M. Brady & R. P. Paul, MIT Press, Cambridge, MA, pp. 735-748, 1984.

[5] S. Lee and A. K. Bejczy, "Dual redundant arm system manipulability," NATO Advanced Research
Workshop on Robots with Redundancy: Design, Sensing and Control, Salb, Italy, June-July 1988.

[6] Y. Nakamura, K. Nagal, and T. Yoshikawa, "Mechanics of coordinative manipulation by multiple
robotic mechanisms," 4th IEEE Int. Conf. on Robotics and Automation, Raleigh, NC, Mar.-

Apr. 1987.
[7] S. Chiu, "Control of redundant manipulators for task compatibility," 4th IEEE Int. Conf. on

Robotics and Automation, Raleigh, NC, Mar.-Apr. 1987.

[8] L. Sciavicco and B. Siciliauo, "Solving the inverse kinematic problem for robotic manipulators,"
6th CISM-IFToMM Ro.Man.Sy, Cracow, Poland, Sept. 1986.

Appendix A

The matrix j_t defined in (24), by substituting the expressions of W in (5) and J:2 in (21),

becomes

0, 0/(,:, 0)
= -RI. I -R1. jTt "

The matrices Jirt can be partitioned by rows as

J_t=((J_t)') i=1,2 (A-2)(j?t).

where the subscripts f and n refer to forces and moments respectively. Plugging (A-2) in (A-I) gives

jTt = (jrt jTt) + ( 0 0_R,_(j_ft) I _/_,(j2rt) I ) (A-3)

which, by virtue of (31), can be compactly written as

j[t (j It j_t). (A-4)

The matrix j,.jr in (26) can then be computed. First, one obtains

(jt(jrt jt + j:t J:)--I I _
C : _,jt(jrt jt + j:t fl)...,/

(A-S)
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where the "~''s have been dropped without loss of generality. Eq. (A-5) leads to

joj: = (jr j_+j:t j:l_TJ,tj;(j, tj_+j:t j:)_,
+(jrt jt +j;tj:)-Tj;tj:(jrt j: + ,;t j:)-,

that can be compacted into

(A-6)

j.jy : (j_t j_ + j_t j_)-T. (A-7)

By virtue of the property j[t j t = (j,j[)-l, eq. (A-7) directly leads to (30 I.

Appendix B

The matrix _ defined in (33), by substituting the expression of Ji2 in (21) and V in (71, becomes

('..o, <B,,
-R2a

The matrices jr can be partitioned by columns as

J[ = ((J[)s (J[),) ;= 1.2.

Plugging (B-21 in (B-1 / gives

(J,_ (oJ_: -J;]+ o

which, by virtue of (38), can be compactly written as

(B-2)

(B-3)

(B--4)

Computing the matrix JrJ f in (35) directly leads to (37).

_" robot 2 ?

ro o/ I
q _ hand 2 frame _>
\ _haodl / + _ . .i, /

_:-P frame" ] "_ ,_ /

\ ",,,/_,._/_--<,. \,," /
_, -_ object -""'-.-_, " O/

%... fram. //

base frame

Fig. 1 - A dual cooperative robot system
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Fig.2 - Manipulabilityellipsoids fora firstconfiguration
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Fig. 3 - Manipulability ellipsoids for a second configuration
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